

CHEMISTRY

Paper 2 Multiple Choice (Extended)

0620/22

May/June 2019

45 minutes

Additional Materials: Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

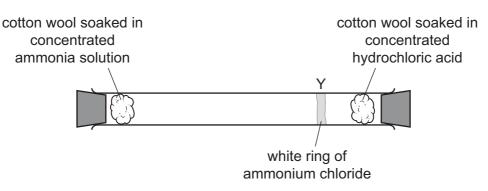
READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

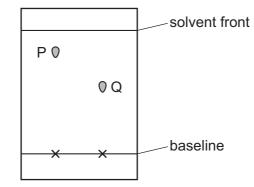

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 20. Electronic calculators may be used.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 17 printed pages and 3 blank pages.

1 The apparatus shown is set up. After 20 minutes a white ring of ammonium chloride is seen at position Y.


Which statement about the molecules of ammonia and hydrogen chloride is correct?

- A Molecules in ammonia have a larger M_r than molecules of hydrogen chloride and so they move more slowly.
- **B** Molecules in ammonia have a larger M_r than molecules of hydrogen chloride and so they move more quickly.
- **C** Molecules in ammonia have a smaller M_r than molecules of hydrogen chloride and so they move more slowly.
- **D** Molecules in ammonia have a smaller M_r than molecules of hydrogen chloride and so they move more quickly.
- **2** A student measures 25.00 cm^3 of dilute hydrochloric acid accurately.

Which apparatus is most suitable?

- A beaker
- B measuring cylinder
- **C** burette
- **D** dropping pipette

3 The chromatogram of solutions of two metal ions, P and Q, is shown.

P is coloured. A locating agent is used to find the position of Q.

The $R_{\rm f}$ value of each solution is calculated.

P is a1..... element and has an $R_{\rm f}$ value2..... than that of Q.

Which words complete gaps 1 and 2?

	1	2	
Α	non-transition	greater	
в	non-transition	smaller	
С	transition	greater	
D	transition	smaller	

4 What is an isotope of ${}^{31}_{15}$ E?

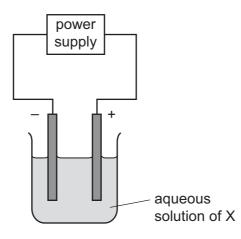
³³ 16

5 Which row describes the formation of single covalent bonds in methane?

Α	atoms share a pair of electrons	both atoms gain a noble gas electronic structure
В	atoms share a pair of electrons	both atoms have the same number of electrons in their outer shell
С	electrons are transferred from one atom to another	both atoms gain a noble gas electronic structure
D	electrons are transferred from one atom to another	both atoms have the same number of electrons in their outer shell

- 6 Which statement describes the structure of an ionic compound?
 - **A** It is a giant lattice of oppositely charged ions.
 - **B** It is a giant lattice of positive ions in a 'sea' of electrons.
 - **C** It is a giant molecule of oppositely charged ions.
 - **D** It is a simple molecule of oppositely charged ions.
- 7 Calcium metal reacts with water to form a solution of calcium hydroxide and hydrogen gas.

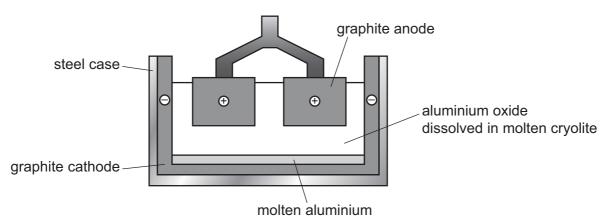
Which equation is correct?


- $\textbf{A} \quad Ca(s) \ + \ H_2O(aq) \ \rightarrow \ CaOH(aq) \ + \ H(g)$

- **8** 25.0 cm³ of 0.100 mol/dm³ aqueous sodium hydroxide is neutralised by 24.6 cm³ of dilute sulfuric acid.

What is the concentration of the dilute sulfuric acid?

- **A** 0.0508 mol/dm³
- **B** 0.0984 mol/dm³
- **C** $0.102 \text{ mol}/\text{dm}^3$
- **D** 0.203 mol/dm³


9 The diagram shows the electrolysis of an aqueous solution of X using inert electrodes.

Hydrogen is produced at the cathode and chlorine is produced at the anode.

What is X?

- A concentrated copper(II) chloride solution
- B concentrated hydrochloric acid
- C dilute hydrochloric acid
- **D** dilute sodium chloride solution
- **10** Aluminium is extracted by electrolysis as shown.

Which row shows the ionic half-equations at the cathode and the anode?

	cathode	anode	
Α	$Al^{3+} \rightarrow Al + 3e^{-}$	$20^{2-} \rightarrow 0_2 + 4e^-$	
в	$Al^{3+} \rightarrow Al + 3e^{-}$	$2O^{2-}$ + $4e^- \rightarrow O_2$	
С	Al^{3+} + $3e^- \rightarrow Al$	$2O^{2-} \rightarrow O_2 + 4e^-$	
D	Al^{3+} + $3e^- \rightarrow Al$	$2O^{2-}$ + $4e^- \rightarrow O_2$	

11 Fuel cells are used as energy sources in cars.

Which row gives a fuel used in a fuel cell and the products formed?

	fuel in a fuel cell	products formed	
Α	hydrogen	carbon dioxide and water	
В	B hydrogen water only		
С	c petrol carbon dioxide and w		
D	petrol	water only	

12 Two elements, X and Y, react together to form a covalent molecule as shown.

The reaction is exothermic.

 $X_2(g) + Y_2(g) \rightarrow 2XY(g)$

The bond energies are shown in the table.

bond	bond energy in kJ/mol
X–X	436
Y–Y	242
X–Y	431

What is the energy change for the reaction?

A +184 kJ/mol B –184 kJ/mol C +247 kJ/mol D –247 kJ/mol

- **13** Which change in reaction conditions increases both the collision rate and the proportion of molecules with sufficient energy to react?
 - A addition of a catalyst
 - **B** increasing the concentration of a reactant
 - **C** increasing the surface area of a reactant
 - **D** increasing the temperature of the reaction

14 When blue-green crystals of nickel(II) sulfate are heated, water is produced and a yellow solid remains. When water is added to the yellow solid, the blue-green colour returns.

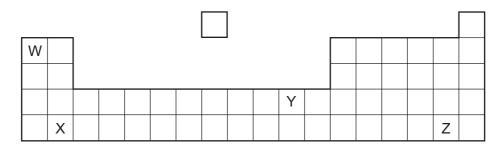
Which process describes these changes?

- A combustion
- **B** corrosion
- **C** neutralisation
- D reversible reaction
- **15** The equation for the manufacture of ethanol is shown.

 $C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$ ethene steam ethanol

What is the effect of doubling the pressure on this reaction?

- A decreases the rate of formation of ethanol
- B increases the yield of ethene
- **C** decreases the rate of formation of ethene
- D increases the yield of ethanol
- **16** The ionic equation for the reaction of aqueous potassium bromide with chlorine gas is shown.

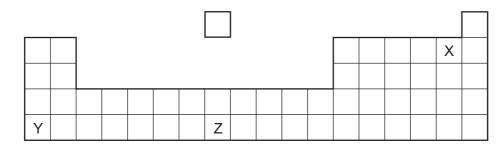

$$2Br^{-} + Cl_2 \rightarrow Br_2 + 2Cl^{-}$$

Which statement is correct?

- A Bromide ions are oxidised by gaining electrons.
- **B** Bromide ions are oxidised by losing electrons.
- **C** Chlorine is oxidised by gaining electrons.
- **D** Chlorine is oxidised by losing electrons.
- 17 Which type of oxide are carbon monoxide and aluminium oxide?

	carbon monoxide	aluminium oxide	
Α	acidic	amphoteric	
в	acidic	basic	
С	neutral	amphoteric	
D	neutral	basic	

18 The positions of elements W, X, Y and Z in the Periodic Table are shown.


Which elements form basic oxides?

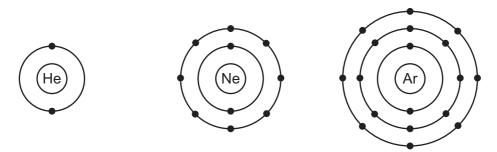
A W, X and Y **B** W and X only **C** Y only **D** Z only

19 Which row shows the difference between a weak acid and a strong acid?

	weak acid	strong acid	
Α	fully ionised	partially ionised	
В	concentrated	dilute	
С	dilute	concentrated	
D	partially ionised	fully ionised	

20 Part of the Periodic Table is shown.

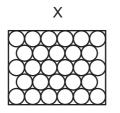
Which row describes the properties of X, Y and Z?

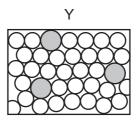

good conductor of electricity		high melting point	
A X		Z	
B Y		Z and X	
С	Y and Z Z		
D	Z and X	Х	

element	melting point /°C	boiling point /°C
lithium	181	1330
sodium	98	883
potassium	63	759
rubidium	39	688
caesium	28	671

21 The melting points and boiling points of the elements of Group I of the Periodic Table are shown.

Which pair of elements are liquid at 800 °C?


- **A** caesium and rubidium
- B potassium and sodium
- C lithium and sodium
- D potassium and caesium
- 22 The electronic structures of helium, neon and argon are shown.



Which row describes these gases?

	reactivity	form of the gas	electronic structure
Α	reactive	monoatomic	incomplete outer shell of electrons
в	unreactive	diatomic	complete outer shell of electrons
С	unreactive	diatomic	incomplete outer shell of electrons
D	unreactive	monoatomic	complete outer shell of electrons

23 The diagrams show the structure of two substances used to make electrical conductors.

Which statement correctly describes X and Y?

- **A** X is a pure metal and Y is a compound.
- **B** X is a pure metal and Y is an alloy.
- **C** X is a solid and Y is a liquid.
- **D** X is harder and stronger than Y.
- 24 A student heated the carbonates and nitrates of sodium and copper.

The results are shown.

	compound heated	gases released	solid formed
1	sodium carbonate	carbon monoxide	sodium oxide
2	copper(II) carbonate	carbon dioxide	copper
3	sodium nitrate	oxygen only	sodium nitrite
4	copper(II) nitrate	nitrogen dioxide and oxygen	copper(II) oxide

Which rows describe the correct results?

A 1 and 3 B 2 and 3 C 3 and 4 D 4 only

25 Zinc is extracted from its ore, zinc blende, using two chemical reactions.

$$1 \quad 2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

 $2 \quad 2ZnO \ + \ C \ \rightarrow \ 2Zn \ + \ CO_2$

Which substance is reduced in reactions 1 and 2?

	reaction 1	reaction 2
Α	O ₂	С
в	O ₂	ZnO
С	ZnS	С
D	ZnS	ZnO

26 Four metals, zinc, M, copper and magnesium, are reacted with aqueous solutions of their nitrates.

metal	magnesium nitrate	M nitrate	copper nitrate	zinc nitrate	
magnesium		1	1	1	key
zinc	x	1	✓		✓ = reacts
М	x		✓	x	x = no reaction
copper	x	X		x	

The results are shown.

What is the order of reactivity of these four metals starting with the most reactive?

- **A** copper \rightarrow zinc \rightarrow M \rightarrow magnesium
- **B** copper \rightarrow M \rightarrow zinc \rightarrow magnesium
- **C** magnesium \rightarrow M \rightarrow zinc \rightarrow copper
- **D** magnesium \rightarrow zinc \rightarrow M \rightarrow copper
- 27 Which property of aluminium makes it useful in the manufacture of aircraft?
 - A conducts electricity
 - **B** high boiling point
 - C low density
 - D silver colour
- **28** The exhaust gases from cars contain oxides of nitrogen.

How are these oxides of nitrogen formed?

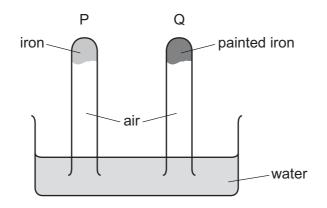
- A Nitrogen and oxygen from the air react together at the high temperatures in the engine.
- **B** Nitrogen and oxygen from the petrol react together in the car exhaust.
- **C** Nitrogen from the petrol reacts with oxygen at the high temperatures in the engine.
- **D** Nitrogen reacts with oxygen from the air in the catalytic converter.

29 Water can be treated by filtration then chlorination.

Which uses do not need water of this quality?

- 1 water for cooling in industry
- 2 water for washing clothes
- 3 water for drinking

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only


30 Some of the processes involved in the carbon cycle are shown.

- 1 glucose + oxygen \rightarrow carbon dioxide + water
- 2 carbon dioxide + water \rightarrow glucose + oxygen
- 3 methane + oxygen \rightarrow carbon dioxide + water

What are the names of these processes?

	1	2	3
Α	combustion	respiration	photosynthesis
в	photosynthesis	combustion	respiration
С	respiration	combustion	photosynthesis
D	respiration	photosynthesis	combustion

31 The diagram shows an experiment to investigate how paint affects the rusting of iron.

What happens to the water level in tubes P and Q?

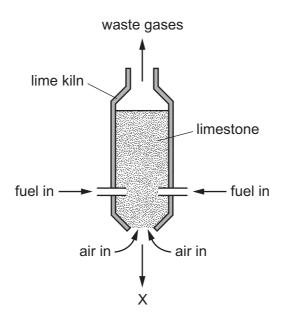
	tube P	tube Q
Α	falls	rises
в	no change	rises
С	rises	falls
D	rises	no change

- 13
- **32** Ammonia is produced in the Haber process.

The equation for the reaction is shown.

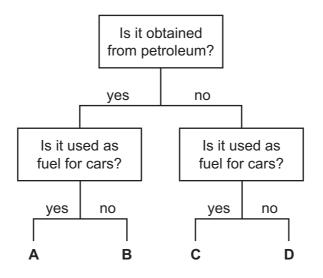
 $3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$

The forward reaction is exothermic.


Which conditions of temperature and pressure produce the highest yield of ammonia?

	temperature	pressure
Α	high	high
в	high	low
С	low	high
D	low	low

33 Which row shows the conditions used in the Contact process?

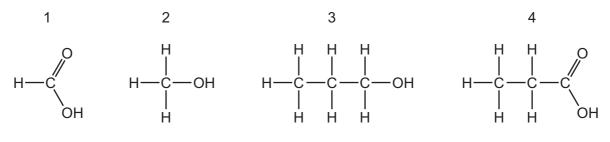

	temperature /°C	pressure / atm	catalyst
Α	25	2	iron
в	25	200	iron
С	450	2	vanadium(V) oxide
D	450	200	vanadium(V) oxide

34 The diagram represents a lime kiln used to heat limestone to a very high temperature.

What leaves the kiln at X?

- A calcium carbonate
- B calcium hydroxide
- C calcium oxide
- D calcium sulfate
- 35 Which fuel could be gasoline?

- 36 Which statement about homologous series is not correct?
 - **A** All homologous series are hydrocarbons.
 - **B** Members of a homologous series have the same functional group.
 - **C** Members of a homologous series have similar chemical properties.
 - **D** The alkanes are an example of a homologous series.
- **37** In bright sunlight, ethane and chlorine combine in substitution reactions.

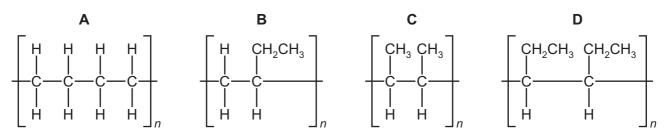

Which compound is not formed in these reactions?

A C_2H_3Cl **B** C_2H_5Cl **C** $C_2H_4Cl_2$ **D** HCl

38 What are the properties of aqueous ethanoic acid?

	decolourises bromine water	reacts with calcium carbonate to make carbon dioxide	turns damp red litmus blue
Α	\checkmark	\checkmark	X
в	\checkmark	×	\checkmark
С	×	\checkmark	X
D	×	×	\checkmark

39 The structures of four molecules are shown.



Which molecules react together to form the ester propyl methanoate?

A 1 and 2 B 1 and	3 C	2 and 4 D	3 and 4
-------------------	------------	-----------	---------

40 But-1-ene has the structure $CH_3CH_2CH=CH_2$.

What is the structure of poly(but-1-ene)?

BLANK PAGE

17

BLANK PAGE

18

BLANK PAGE

19

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019

The Periodic Table of Elements

I II II IV V VI VI <th></th> <th>VIII</th> <th>2</th> <th>He</th> <th>helium 4</th> <th>10</th> <th>Ne</th> <th>neon 20</th> <th>18</th> <th>Ar</th> <th>argon 40</th> <th>36</th> <th>Ъ</th> <th>krypton 84</th> <th>54</th> <th>Xe</th> <th>xenon 131</th> <th>86</th> <th>Rn</th> <th>radon -</th> <th></th> <th></th> <th></th>		VIII	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Ъ	krypton 84	54	Xe	xenon 131	86	Rn	radon -						
III III III IV V 4 4 1 1 1 1 1 V V V 8 6 7 1 1 1 1 V V V 9 9 1 1 1 1 1 V V V V 9 1 1 1 1 1 1 1 1 V<		١١٨				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	I	iodine 127	85	At	astatine 						
III III III III IV 1 4 1		٨I				8	0	oxygen 16	16	ა	sulfur 32	34	Se	selenium 79	52	Te	tellurium 128	84	Ро	polonium –	116	L<	ivermorium _			
IIIIIIIIIIIIIIIIKeyII		>				7	z	nitrogen 14	15	٩	shosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth 209						
$\label{eq:constraints} Interval in the formulation of the form$		\geq				9	U	carbon 12	14	Si	silicon p 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						S	ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204						
III III 4 4 benydium 4 benydium 4 benydium 4 benydium 1 ben												30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	Cn	opemicium -			
III III 4 4 benydium 4 benydium 4 benydium 4 benydium 1 ben												29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	oentgenium –			
II II 4 4 beryllum 9 9 9 9 9 112 Adomic symbol 112 Moj 112 Moj 112 atomic number 112 Moj 112 Moj 112 Moj 112 Moj 112 Moj 112 Moj 113 Moj 113 Moj 113 Moj 113 Moj 114 V 115 V 115 V 111 V 112 V 113 V 114 V 115 V 116 Moj 117 V 118 Moj 119 Moj 111 111 111 111 111 <t< td=""><td>dr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td></t<>	dr																				-		_			
II II 4 4 Be atomic number 9 atomic number 12 Mg Bi atomic symbol 12 Mg Mg atomic number 12 Mg Be atomic symbol 12 Mg Mg atomic symbol Ba atomic symbol Ba atomic symbol and atomic symbol Ba atomic symbol Ba atomic symbol Ba atomic mass 38 39 40 41 42 43 55 53 54 56 57-71 72 74 75 53 56 57-71 74 74 75 73 74 75 73 74 76 76 74 76 76 74 76 76 74 76 76 74 76 76 74 76 76 74 76 76 74 76 76 74 76	Grot														27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -
II II 4 4 Berylium 9 4 Berylium 9 4 Berylium 9 4 Berylium 9 12 Mig Mig magnesium 24 Key Mig Mig magnesium 24 ration atomic symbol relative atomic mass Mig Mig Mig magnesium 24 vanadium 12 atomic symbol atomic symbol relative atomic mass 12 Nb Nc Mig Mig magnesium 24 atomic symbol relative atomic mass 13 Y Zr Nb Min vanadium strontum 88 39 40 41 42 Si 73 74 74 Mantanoids Hf Ta V Mantanoids Rf Ta V Mantanoids Rf Db Sg Mantanoids Rf Db Sg Mantanoids Rf Db Sg			-	т	hydrogen 1							26	Ее	iron 56	44	Ru	ruthenium 101	76	SO	osmium 190	108	Hs	hassium 			
II II 4 4 Beryllium 4 beryllium 4 9 atomic number 12 Mg magnesium atomic symbo 12 Mg magnesium 24 23 22 23 33 38 39 40 41 9 40 137 72 137 178 137 178 137 178 137 178 137 178 137 178 137 178 138 88-103 137 178 138 88-103 137 178 138 104 137 178 138 104 137 178 138 104 137 104 138 104 138 104 139 104 131 105]						25	Mn	manganese 55	43	ЦС	technetium -	75	Re	rhenium 186	107	Bh	bohrium –			
Image: Provint mage and provint provint mage and provint						lo	ss				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium 				
Image: Provint mage and provint provint mage and provint					Key	tomic number	nic symb	name ive atomic mas				23	>	vanadium 51	41	ЧN	niobium 93	73	Та	tantalum 181	105	Db	dubnium –			
E Bantum						9	ator	relat				22	F	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Rf	rutherfordium -			
						L			L			21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids				
Ithium It		=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ک	strontium 88	56	Ba	barium 137	88	Ra	radium -			
		-				e	:	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ъг	francium -			

0620/22/M/J/19

Lu Iutetium 175 103 Lr Iawrencium Yby Ytterbium 173 102 102 NO mendelevium thulium 101 Md Er 167 167 100 100 holmium 165 99 99 Dy dysprosium 163 98 Cf Californium Tb 159 97 97 berkelium Gd 157 157 157 157 157 157 157 Eu 152 95 95 americium Samarium 150 94 94 Pu Pu Pm promethium Np neptunium 144 92 U uranium 238 ⁰⁹ Nd Pr 141 141 91 91 Pa protactinium 231 Cenium 140 90 90 HT 1232 La lanthanum 139 89 89 AC actinium lanthanoids actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

© UCLES 2019

_